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Algebra

1.1 Polynomial Functions

Any function f(x)=a,x"+a, (X" +...+aXx+a, is a polynomial function if a;(i=0,1,23,..,n) is a
constant which belongs to the set of real numbers and the indices, n,n-1,...,1 are natural numbers. If
a, =0, then we say that f(x) is a polynomial of degree r.

Example 1. x*-x3+x?—2x+1 is a polynomial of degree 4 and 1 is a zero of the polynomial as

1413412 -2x1+1=0.
Also,
2. X2 —ix2

i° i

+ix+1=0 is a polynomial of degree 3 and i is a zero of his polynomial as
+ii+l=—i+i-1+1=0.
Again,
3. x2—(3-+2)x-+/6 is a polynomial of degree 2 and ~/3 is a zero of this polynomial as
(v3)? - (v3-2)v3-6 =3-3+6 -6 =0.

Note : The above definition and examples refer to polynomial functions in one variable. similarly
polynomials in 2, 3, ..., n variables can be defined, the domain for polynomial in n variables being set of
(ordered) n tuples of complex numbers and the range is the set of complex numbers.

Example:  f(x,y,2)=x?>—xy+z+5 is a polynomial in x,y,z of degree 2 as both x?

degree 2 each.

and xy have

Note : In a polynomial in n variables say x, X, ..., X,, a general term is xfl, x'2‘2, x,'fn where degree is
ki +k, +...+k, where k; >0,i=1,2,...,n. The degree of a polynomial in n variables is the maximum of the
degrees of its terms.

Division in Polynomials

If P(x) and ¢(x) are any two polynomials then we can find polynomials Q(x) and R(x) such hat
P(x) = ¢(x) xQ(x) + R(x) where the degree of R(x) < degree of Q(X).

Q(x) is called the quotient and R(x), the remainder.
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121
In particular if P(x) is a polynomial with complex coefficients and a is a complex number then there exists
a polynomial Q(x) of degree 1 less than P(x) and a complex number R, such that
P(x) =(x—-a)Q(x)+R.

Example : x° =(x—a)(x* +ax +a®x® +a’x+a*)+a°

Here P(x) =X,

Q(x)= x* +axd +a®x? +adx+a’
and R=a’.

1.3. Remainder Theorem and Factor Theorem
Reminder Theorem : If a polynomial f(x) is divided by (x—a) then the remainder is equal to f(a).

Proof : f(x)=(x-a)Q(x)+R ..(1)
andso f(a)=(a—a)Q(a)+R=R
If R=0 then f(x)=(x—a)Q(x) and hence (x—a) is a factor of f(x).

Further f(a)=0 and thus a is a zero of the polynomial f(x). This leads to the factor
theorem.

Factor Theorem : (x —a) is a factor of polynomial f(x) ifandonlyif f(a)=0.

Fundamental theorem of algebra : Every polynomial function of degree >1 has at least one zero in the
complex numbers. In other words if we have

f(x)=a,x" +a, X" +...+ax+a
with n >1, then there exists at least one h e C such that,
a,h" +a, h"+. . +ah+a, =0
From this it is easy to deduce that a polynomial function of degree “n’ has exactly n zeroes.

Example 1.  Find the polynomial function of lowest degree with integral coefficient s with /5 as one of
its zeroes.

Solution : Since the order of the surd /5 is 2, you can expect the polynomial of the lowest degree to be
a polynomial of degree 2.

Let P(x)=ax?+bx+c;a,b,ceQ
P(/5)=5a+~/5b+c=0

But /5 is azero,so 5a+c=0 and v/5b=0
= c=-5a and b=0.

So the required polynomial function is P(x) = ax? —5x.

You can find the other zero of this polynomial to i.e., —/5.
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Example 2.

Solution :

Example 3.

Solution :

Example 4.

Solution :

131

If X, y, z be positive numbers, show that
(x+y+ z)3 > 27xyz.
Since A.M. (arithmetic mean) > G.M. (geometric men), therefore

X+y+12

> (xyz)1/3.
Cubing both sides and multiplying throughout by 27, we have
(x+y+12)° = 27xyz.

If a,...,a,,by, ..., b, be real numbers and none of the b;’s be zero, then prove that
@2 +..+a2)(b% +...+0b.2) > (ay/by +...+a,/b,)°.

Applying Cauchy-Schwarz inequality to the numbers &, ..., a,, bl‘l, bn‘l, we have

2
{a1(%]+...+an (%)} < (@ +.+a2)(b? +...+b;?),

2
or (af+...+a§)(b1‘2+...+bg2)z(ﬁ+...+a—”j .

by by
(Triangle Inequality). If X, X, Y4, Yo, be any real numbers, then show that
=500+ (0 = ¥2) 23 < O +¥2) + (G +y2),

where the sign J denotes the positive square root.

(4 = %)% + (Y1 = ¥2)% = OF + y2) + (%5 +y5) = 20X + Y1Y2)- (i)
By Cauchy-Schwarz inequality,

(aXo +Y1Y2)2 < OF + V) (X5 +Y3),
ie. X% + VY2 | < 02 + ) 0G +¥3) (i)

From (i) and (ii), we have

(= X0)% + (V1 = ¥2)% < O + YD) + (<3 +y3) +2x2 + y2) (G + y3),

of  (a—x)2+ (Y- Ya)? <O +y2) 0B +yH)Y

Taking positive square roots, we have

K00 =%2)2 + (1 — y2) 2 <02+ y2) +4J0E + ¥3).

Remark : Geometrically interpreted, the above inequality expresses the fact the sum of two sides of a
triangle can never be less than the third side and this is precisely the reason for the name ‘triangle

inequality’.
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Example 5.

Solution :

Example 6.

Solution :

[141

If ¢, ..., C, be positive real numbers, show that

(C +.tCy) <n?(E +..+ D).
When does the inequality reduce to equality ?
If a,...,a,, by, ..., b,, be real numbers, then by Cauchy-Schwarz inequality,
(ayby +...+2,0,)? <(a’ +...+a2)907 +...+b?). ..(1)

Putting a; =ci3/2, b, :cillz, (1=12,...,n) in the above inequality, we have

€ +..+c2)2 < (2 +.+C3)(c +...+Cp). ..(2)
Again, putting a; =¢;, b, =1, (i=1,2,...,n) in (1), we have

(C +...+C,)> <n(cd +...+c2). ...(3)
Squaring both sides of (3) and using (2), we immediately have
(c +..+¢,) <n(c +..+cd).

The above inequality reduces to an equality iff each of the inequalities (2) and (3) reduces to
an equality, i.e., iff

32. .32, 2. .2
(O T o NN o

and Ci....Cp=1:.11,

ie., iff € =C)=..=C,.

If x,y,z be positive real numbers such that x%>+y?+z2=27, then show that
x3+y3+23281.
Applying Cauchy-Schwarz inequality to the two sets of numbers

X312 312 232,22 12

we have (x2+y2+22)2s(x3+y3+z3)(x+y+z). ()
Again, applying Cauchy-Schwarz inequality to the two sets of numbers
X, Y,2;1,1,1

we have (X+y+2)2 <3(x%+y%+12?%) ..(ii)
Squaring both sides of (i), we have

C+y?+ 22 <0C+y3 + 2203 +y3 + %) ...(iii)
ie., P +y2+22) < (C+y3 + 232 (X2 + y2 + 77)
Since x2 + y? +z2 = 27, we have from (iii)

(x3 + y3 + 23)2 > (81)2.
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Taking positive square roots, we have

x3+y3+23281.

Tcheby Chef’s Inequality

Example 7.

Solution :

Theorem :

Proof :

If &, a,, as, by, by, by are any real numbers such that a; < a, < ag,b; < b, < bs, then show
that

3(a1b1 + a2b2 + a3b3) > (a.l + a2 + ag) (bl + bz + b3)

Since g < a,,by <b,, therefore, a — a,, b — b, are of the same sign or at least one of
them is zero, so that

(&g — ay) (p — bg) > 0, and therefore

b + ab, > ab, + aby.
Similarly, ab, + aghy > aby + aghy, .. (i)
and agb + by > aghy + ayhs. .. (i)

Adding (i), (if) and (iii) and then adding ab, + a,b, + agb; to both sides of resulting
inequality, we have

3(ayhy + asby + aghs) < (8 + @, + ag) (b + by, + by).
If a,...,a, and by, ..., b, are any real numbers, such that
(1)  <..<a,, b <.<hb,, then
n(aby +...+a,b,) > (ag +...+a,) (b +...+by,).
(i) & >...2a,, b <...<b,, then
n(aby +...+a,b,) < (ag +..+a,)(b +...+by).

0] For every pair of distinct suffixes p and g, the differences a, —a, and b, —b, are of
the same sign or at least one of them is zero.
Hence, (a, —aq)(bp, —by) 20
ie., d,b,+a

qbq > apbq + aqbp.

There are %n(n—l) inequalities of the above type (for there are %n(n—l) pairs of

distinct suffixes p, q), Adding the corresponding sides of all such inequalities, we
obtain

(n=-D(ayby +...+apby) = (g +...+a,)(0y +...+b,) — (a4 +..+ a,b,)
ie., n(aby +...+a,by) > (ag +...+a,) (b +...+by,).

(i) For every pair of distinct suffixes p and g, a, —a, and b, —by, are of opposite signs
or at least one of them is zero. Hence,
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(@p —aq) (b, —bg) <O

ie., ab +aqbqsab +ab

Adding the corresponding sides of all the %n(n —1) inequalities of the above type, we
obtain
(n=D(ajh +...+a,b,) < (a; +...+a,)(b +...+b,) — (a0, + ...+ a,by),
ie., n(aby +...+a,b,) <(aq +...+a,) (b +...+b,).
Remark : The inequality above can be put in the following symmetric form :

b +...+a,b, S8t tay b +...+b,
n B n n

This form suggests the following generalisation which we state without proof.
If a,...,a,; by, .. ., k, are real numbers such that
y <..<a, b <...<b,, ..., K <. LKk,

ayby.. kg +...+a,b, .. K, Sty by +..+b, Kki+..+k,

then, > )
n n n n

We shall refer to this inequality as Generalised Tchebychef's Inequality.
Example 8.  Show that :

@  V1+v2+..+4/n<n {(n;rl)}

(b) (1+\/%+...+\/%]/\/ﬁg(2n_1)1/4

Solution:  (a)  Applying Tchebychefs inequality to the sets of numbers /1, ..., v/n: /1, ..., V/n,

we have

N(VIV1+v2A42 +...+nVn) = (V142 +...+/n)?,
or NAL+2+..4n) > (V1+4/2 +...+/n)?,

or 20D > (e V2s VR
Therefore, V1++2+...+J/n<n {(”;1)}

(b) Applying Tchebychef's inequality to the sets of numbers 1,

we obtain

16



Taking positive square roots of both sides, we have

(1+%+...+%)s,/(2n—1) 0

Again, applying Tchebychef's inequality to the sets of numbers 1, \/% \/% .1, \E \/% we have

(1+\/%+...+\/%TSn(1+%+...+%j. (1))

{1+\/%+...+\/@}2 < nm.
(1+\E:;H'"+\/E] <(@2n—1Y

Example 9. Ifa, b, c are all positive and no two of them are equal, then prove that

From (i) and (ii), we have

Therefore

(a+b+c)’

9 > 3abc.

(@ a+bd+cd>

() a*+b*+c*>abc(a+b+c).

Solution : @ Without any loss of generality we may assume that a<b<c. By applying the
generalised Tchebychef's inequality to three sets of numbers each of which is the

same as a, b, ¢, we obtain

a®+b3+c® y a+b+c a+b+c a+b+c
3 3 ' 3 ' 3 '

3
ie., a3+b3+c3>w ()

Again, since the arithmetic mean exceeds the geometric mean

17
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(a+g+cj3>abc ... (i)

From (i) and (ii), we obtain the inequalities

a3+b3+c3>(a+9ﬁ>3abc. ...(a)

(b) As in (a), without any loss of generality we may assume that a<b<c. Since
a<b <c, therefore, a® <b® <cS.

Applying Tchebychefs inequality to the sets of numbers a, b, c; a2, b3, ¢3, we obtain

a*+b*+0* a+pl+c® a+bsc

3 > 3 — ()
3 3 3
Also, from (a) % > abc. (V)

From (iii) and (iv), we have
a* +b*+c* > abc(a+b+c).
Example 10. If a, b, c are positive and unequal, show that
@ +b’+c)@+b%+c?) > (@° +b° +c2)(@* +b* + ¢,
Solution : @ +b’+c)@%+b%+c?)—(@° +b° +c2)(@* +b* + ¢,
=>(a’b®+a%’ —a’h* -a%b°),
=¥a’h?(a® +b° —a’p? —a%®),
=va’b?(a®-b%)(a? -b?).
The differences a® —b?, a® —b°® are both of the same sign, and therefore, (a® —b?)(a® -b®%)
is positive. Similarly, the other two terms in the above sum are also positive. Therefore,
@ +b" +c")(@%+b%+c?)— (@’ +b° +c®)@* +b* +c*) > 0.
Example 11. If a, b, c are positive and if p, g, r are rational numbers such that p—q-r(=0) and r(= 0)
have the same sign, then show that

@P +bP+cP)@% +b9+ct) > @P" +bP" +cP @I +bIT 49T,
Show that if either
(i) a=b=c, or(ii) p=q+r, or(iii) r =0, then equality holds.

Solution : (@P +bP+cP)@¥+b9+ch—@P" +bP" +cP @I + I 4T,
=>(%P +a%P —aPp4" —a% " cP*"),

= 3a%(aP 9 +bP9—aP 9T’ —a"hP4T),

18
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=2a%9@P 9" —pP 9 @ -b").

Since p—qg-r and r have the same sign, the differences aP %" —pP™%" and a" —b" have
the same sign or are both zero.
Therefore,

a%d@P 4" —pP 9 "@" -b") >0,
and similarly each of the other two terms in the above sum is also non-negative, so that the
sum is non-negative. This proves the inequality.
Also, if any of the given conditions is satisfied, then at least one of the factors in each term

in 2a%h9(d P9 —pP~9")(@" —b") vanishes and therefore the sum is zero. This proves that
the equality holds.

IMPORTANT TERMS AND RESULTS IN ALGEBRA

Identities :

(@ Ifa+b+c=0a’+b?+c?=-2(bc+ca-+ab)

() Ifa+b+c=0a°+b®+c®=3abc

() Ifa+b+c=0a*+b*+c*=2b%?+c%a® + a%h?)

- %(a2 £ b2 4 c?)?

Periodic function : A function fis said to be periodic, with period k..if.

f(x+k)=f(x)Vx

Pigeon Hole Principle (PHP) : If more than n objects are distributed in ‘n’ boxes, then at least one
box has more than one object in it.

Polynomials :

(@)

(b)

(©)

A function f defined by

f(x) = apx" + ax" ™t + ... +a,

where a; = 0,n is a positive integer or zero and a;(i = 0,1,2,...,n) are fixed complex
numbers, is called a polynomial of degree n in x. The numbers ay, &, a,, ..., @, are called the

coefficients of f. If a. be a complex number such that f(a) = 0, then o is said to be a zero
of the polynomial f.

If a polynomial f(x) is divided by x — h, where h is any complex number, the remainder is
equal to f(h).

If h is a zero of a polynomial f(x), then (x — h) is a factor of f(x) and conversely.

19



(d)
(€)

()

(@)

(h)

(i)

6. @

(b)

(©)

Question 1.

Solution :

1201

Every polynomial equation of degree n > 1 has exactly n roots.
If a polynomial equation wish real coefficients has a complex root p + iq (p, q real numbers,
q # 0) then it also has a complex root p —iq.

If a polynomial equation with rational coefficients has an irrational root p + \/a (P, 9
rational, q > 0, g not the square of a rational number), then it also has an irrational root

p-+a.

If the rational number g (a fraction in its lowest terms so that p, q are integers, prime to

each other, q = 0) is a root of the equation

agx" +ax" 1+, +a,=0

where ag, &, ..., a, are integers and a, = 0, then p is a divisor of a, and q, is a divisor of
ag-

A number o is a common root of the polynomial equations f(x) = 0 and g(x) = 0 iffitis
aroot of h(x) = 0, where h(x) isthe G.C.D. of f(x) and g(x).

A number o is a repeated root of a polynomial equation f(x) = 0 iff it is a common root of
f(x) =0 and f'(x) = 0.

Functional equation : An equation involving an unknown function is called a functional equation.

c
a

If a, B be the roots of the equation ax2+bx+c:0thenoc+[3=_?band of =
If o, B,y be the roots of the equation ax® + bx? + cx + d = 0 then,
FBry = oB+ By +yo =S =
o+ p Y—?’OCB By YOC—E,OL,BY—7

If o, B, 7,8 be the roots of the equations ax* + bx® + cx? + dx + e = 0 then,

oc+[3+y+6=%b;ocBy+ocB6+ocy6+By6=%

aB+ay+a6+By+B6+y6=%
e
Oﬁﬁy5=§

The product of two roots of the equation 4x* — 24x® + 31x*> + 6x — 8 = 0 is 1, find all the
roots.
Suppose the roots are o, B, y,d and aff = 1.

24

Now, Gl=(oc+[3)+(y+8)=—T=6 ..(1)
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Question 2.

Solution :

211

62=(a+B)(y+6)+aB+y6=%
= (a+[3)(y+6)+y6:%—1:27f7

03 = 18(0a + P) + aly +8) =

= wm+M+W+&=§
= Gy = afyd = -2
= 1o = -2

From Eq. (2) and Eq. (4), we get

(B (r+8) = 2

From Eq. (3) and Eq. (4), we get

2o+ )+ (r+8) =

From Eq. (1) and Eq. (6), we get

5
or oa+B ==
b 2

If o, B,y are the roots of x> + px + g = 0, then prove that

a5+B5+Y5 0‘3+Bg+Y3X002+B2+Y2

[ =
® 5 3 2
i oc7+[37+y7_oc5+B5+y5Xoc2+B2+y2
7 5 2

Q) Since a, B, y are the roots of

x>+ px+q =0,

we have,

(2)

..(3)

..(4)

...(5)

...(6)

(1)
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o+ pa+q=0

BB+ pp+q=0 ..(2)
¥ +py+q=0
From (2),
ol + p(Sa) +3q = 0
But Ya = 0, from Eq. (1)

ol = -39

sa? = (Zoc)2 — 220

=02 -2xp (- Zap = p)
=-2p ..(4)

Multiplying (1) by x?, we get
x> + px3+qx2 =0 ...(5)

and a, B, y are three roots of Eq. (5). So

0c5+p0c3+qoc2=0

B° + pp° +qp® = 0 .--(6)
¥+’ =0
From Eq. (6), Za° + p=a® + qZa? = 0
Ta® = ~(p2a® + qZa?)
= —[p(=30q) + q(-2p)] -.(7)
=3pq +2pq = 5pq

or ZXa’ = pq

a5+B5+Y5 _a3+B3+y3xa2+B2+y2

5 3 2
Multiplying Eq. (1) by x, we get

...(8)

x* + px2+qx:0 ...(9)
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and hence Ta* + pZa? + qZa = 0
= sat = —pza? (- Za =0)
Again multiplying Eq. (1) by x*, we get

x' + px5 + qx4 =0 ...(10)
and hence o’ + pZa® + g=ga® = 0
or o’ = —pZoc5 - quc4

= —px5pq - q(-pZa®)

= -5p%q - 2p?q
= -7p’q
or %Zoﬁ = —p2q
= pg x (=p)
=(12a5jx(12a2j
5 2
or OL7+B7+Y7 ~ OLS+B5+Y5 y (12+B2+y2
7 5 2

Question 3. Find the common roots of

x* +5x3 —22x2 —50x +132 = 0 and x* + x® — 20x% + 16X + 24 = 0
hence solve the equations.

Solution : You can see that 4(x?> — 5x + 6) is H.C.F. of the two equations and hence, the common
roots are the roots of

x2—5x+6:0i.e., XxX=3o0r x=2
Now, x* +5x3 —22x2 —50x +132 = 0 ..(1)

and x4 x3 - 20x% +16x+24 =0 ..(2)
have 2 and 3 as their common roots.
If the other roots of Eq. (1) are o and B, then o + f + 5 = -5,

= o+ p =-10 fromeq. (1)
6ap =132
= aff = 22

So, a and B are also roots of the quadratic equation

23



Question 4.

Solution :

[241

X2 +10x+22=0

,_-l0++100-88 10423 . g

2 2
So the roots of Eq. (1) are 2, 3, -5 + /3, —=5+/3.
For Eqg. (2), if oy and B, be the roots of Eq. 92), then we have

o +p+5=-1
ag +pp =6
6(11[?)1 = 24 or (X.]_Bl =4

So o4 and B, are the roots of

X2 +6Xx+4=0

(o 8xV36-16 . &

2
So the roots of Eq. (2) are 2,3, -3 + /5, -3 — +/5.

Solve the system :

xX+y)(x+y+1z)=18
(y+2)(x+y+12z)=30
(z+x)(x+y+2z)=2L
in terms of L.
Adding the three equations, we get

2x+y+2)% =48+ 2L
or X+y+z=+24+1L
Dividing the three equations by (x + y + z) = V24 + L, we get

X+Yy= 1=—— X = ——

18 30 24
— Y + 2+
V24 + L y V24 + L V24 + L

and solving we get,
2
(V2a+L) -30 | _g

X = = ,
N24 + L V24 + L
4+ L)-2L  24-L

NpY NPYEN

_24+L-18  L+6
24+l 24+l

and
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Question5. If x and x, are non zero roots of the equation ax? + bx + ¢ = 0 and —ax?> + bx + ¢ = 0

respectively, prove that %xz + bx + ¢ = 0 has aroot between x and X,.

Solution : X, and X, are roots of
ax> +bx+c=0 ..(1)
and —ax’ +bx+c=0 ..(2)
respectively.
We have ax? +bx, +¢c =0
and —aX,® +bx, +¢c =0
a .z
Let f(X)ZEX + bx + c.
a >
Thus, f(x) = 5 X~ +bx +cC ..(3)
a 2
f(X2)=§X2 + bx, + ¢ ...(4)

Adding %axl2 in Eq. (3), we get
f(x) +%ax12 —ax +by +¢c=0
1 2
= f(x) = —Eaxl ...(5)
Subtracting %ax% from Eq. (4), we get
f(xy) —%ax% = —ax5 +bx, +¢c =0

= f(x)) = %ax%.

Thus f(x) and f(x,) have opposite signs and, hence, f(x) must have a root between x;
and X,.

2

Question 6. Find all real values of m such that both roots of the equation x? — 2mx + (m? —1) = 0 are

greater than —2 but less than +4.
Solution : Therootsare mt1ie., (m+1),(m-1)

—2<(M-1) < (m+1) <4 gives

-1<m«<3.
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Question 7. The roots of the equation x° — 40x* + px® + qx? + rx + s = 0 are in G.P. The sum of their
reciprocal is 10. Compute the numerical value of [s|.

Solution : Let the roots be %,E,a, ar, ar?
r r
1 1 5
Sumoftheroot:a(—2+—+1+r+r ):40 ..(1)
r r
Sumofbereciprocals:%(rz+r+1+1+i2j=10 ..(2)
rr
Dividing 1) by (2), a®> =4 .. a = +2 ...(3)
Since s is the —ve of the product of the roots s = —a° ..(4)
s=132o0r|s| =32 ...(5)

Question 8. Let P(x) = x* + ax® + bx? + cx + d wherea, b, ¢, d are constants. If
P(1) = 10, P(2) = 20, P(3) = 30

Compute w .

10
Solution : We use atrick Q(x) = p(x) —10x ..(1)
The QL =012 =00B =0 ..(2)
o Q(x) ie., divisibleby (x = 1) (x — 2) (x — 3) ..(3)

Since Q(x) is a 4™ degree polynomial
QM) =(x-)(x-2)(x =3) (x - )
and P(x)=(x-2)(x—-2)(x-3)(x —r)+10x ..(4)
P(12) + P(-8)
10
Question 9. Let P(x) = 0 be the polynomial equation of least possible degree with rational coefficients,
having 37 + 349 as a root, Compute the product of all the roots of P(x) = 0.

= 1984

Solution:  Let x = 37 + Y49
X3 :7+49+3-§/7~%
ie., x° = 56 + 21x

Thus, P(x) = x> — 21— 56 = 0 and the product of the root is 56.

Question 10. The equations x> +5x*> + px+q =0 and x> +7x? + px+r =0 have two roots in

common. If the third root of each equation is represented by x; and x, respectively, compute
the ordered pair (x;, X,).
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Solution :

Question 11.

Solution :

Question 12.

Solution :

Question 13.

Solution :

1271

Common roots must be the roots of 2x2 + (r — q) = 0 (Difference of equation)

.. Their sum is O.
Then the third root of the first equation must be -5 and of the second equation is —7.

(Xl’ XZ) = (_5’ _7)
2

If ab,cxyz are all real and a®+b?>+c?2=25 x>+y>+22=36 and
a+b+c
X+y+2

a2 b2 02 ax b cz x2 z 2 22
HEEEORER GO RO R
5 5 5 30 30 30 6 6 6
2 2 2
. [g_ﬁj +[9_1] +[£_£j _0
5 6 5 6 5 6

ax + by + cz = 30, find the value of

Thus a_xXx
5 6
a = kx
5

wherek:E;b=ky and ¢ = kz.
a+b+c _k(x+y+z)_k

X+Y+1z X+Yy+12
k=2
6

If the integer A its reduced by the sum of its digits, the result is B. If B is increased by the
sum of its digits, the result is A. Compute the largest 3-digt number A with this property.

A — (sum of the digits) must be divisible by 9. Then B + (sum of the digits) does not satisfy
must be divisible by 9.

Now consider 999 : 999 — 27 =972 (so defined sum of 27)
990: 990-18=972 (so defined sum of 18)
. Answer is 990.

4

The roots of x* — kx® + kx? + Ix + m = 0) are a,b,c,d. If k,I,m are real numbers,

compute the minimum value of the sum a® + b2 + ¢ + d2.
Sum of the roots = k; Sum of the roots taken two at a line = -k

Thenk? =(@a+b+c+d)? =(%+b?+c®+d?) +2(@b+ac+ad+bc+bd + cd)
=(a2+b2+c2+d2)+2k

Thus a? + b% +¢? +d? = k% — 2k ...(1)
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Question 14.

Solution :

Question 15.

Solution :

Question 16.

Solution :

[281
Thus minimum value of k% — 2k = 1.

2
If 2[%} + 3[%} = 20, then it must be true that a < x < b for some integers a and b.

Compute (a, b) where (b — a) as small as possible. Note : [X] represents the greatest integer
function.

Replacing [%} by y and solving, 2y2 + 3y — 20 = 0

5
= =—or -4
Y 2

—4£§<—3
6

which means —-24 < x < -18
- Ans. (24, 18)

The roots of X3+ px?+qx—19=0 are each one more than the roots of
x> — Ax?> + Bx—C = 0. If A, B,C, P,Q are constants, compute A + B + C.

Now (a+1)((b+1(c+1) =19.

Then A+B+C=(a+b+c)+(ab+bc+ca)+ (abc)
=@+)b+(c+1) -1
=19-1
=18

Find all ordered pairs of positive integers (x, z) that x> = z? + 120.

x2 — 72 =120

= (X+2)(x—-12) =120 =1.120 = 2.60 = 3.40 = 4.30 = 5.24 = 6.20 = 8.15 =10.12
“x=31z2=29x=17,2=13;x=13,z=7;x =11,z =1

.. Required ordered pairs are : (31, 29), (17, 13), (13, 7), (11, 1).
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